There is another useful system of units, besides the $\mathrm{SI/MKS}$. A system, called the $\mathrm{CGS}$ (centimeter-gramsecond) system. In this system Coloumb’s law is given by $\vec F = \frac{{Qq}}{{{r^2}}} \cdot \hat r$ where the distance $r$ is measured in $cm\left( { = {{10}^{ - 2}}m} \right)$ , $\mathrm{F}$ in dynes $\left( { = {{10}^{ - 5}}N} \right)$  and the charges in electrostatic units $(\mathrm{es\,unit}$), where $1$ $\mathrm{esu}$ of charge $ = \frac{1}{{[3]}} \times {10^{ - 9}}C$. The number ${[3]}$ actually arises from the speed of light in vacuum which is now taken to be exactly given by $c = 2.99792458 \times {10^8}m/s$. An approximate value of $c$ then is $c = 3 \times {10^8}m/s$.

$(i)$ Show that the coloumb law in $\mathrm{CGS}$ units yields $1$ $\mathrm{esu}$ of charge = $= 1\,(dyne)$ ${1/2}\,cm$. Obtain the dimensions of units of charge in terms of mass $\mathrm{M}$, length $\mathrm{L}$ and time $\mathrm{T}$. Show that it is given in terms of fractional powers of $\mathrm{M}$ and $\mathrm{L}$ .

$(ii)$ Write $1$ $\mathrm{esu}$ of charge $=xC$, where $x$ is a dimensionless number. Show that this gives $\frac{1}{{4\pi { \in _0}}} = \frac{{{{10}^{ - 9}}}}{{{x^2}}}\frac{{N{m^2}}}{{{C^2}}}$ with $x = \frac{1}{{[3]}} \times {10^{ - 9}}$ we have, $\frac{1}{{4\pi { \in _0}}} = {[3]^2} \times {10^9}\frac{{N{m^2}}}{{{C^2}}}$ or $\frac{1}{{4\pi { \in _0}}} = {\left( {2.99792458} \right)^2} \times {10^9}\frac{{N{m^2}}}{{{C^2}}}$ (exactly).

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(i)$

$\mathrm{F}=\frac{Q q}{r^{2}}$

$\therefore 1 \text { dyne }=\frac{(1 \text { esu charge })^{2}}{(1 \mathrm{~cm})^{2}}$

$\therefore 1 \text { esu }=(1 \text { dyne })^{1 / 2} \times 1 \mathrm{~cm}$

$=\mathrm{F}^{1 / 2} \mathrm{~L}$

$\therefore$ Dimensional formula of $1 \mathrm{esu}$,

$=\left[M^{1} L^{1} \mathrm{~T}^{-2}\right]^{1 / 2} \times\left[\mathrm{L}^{1}\right]$

$=\left[M^{1 / 2} L^{3 / 2} \mathrm{~T}^{-1}\right]$

Hence, in dimensional formula of esu charge, power of $M$ is $\frac{1}{2}$ and of $L$ is $\frac{3}{2}$, which is noninteger.

$(ii)$ Suppose $1$ esu $=x \mathrm{C}$, where $x$ is a dimensionless number. The force between two charges of $1$ esu magnitude is

$10^{-5} \mathrm{~N}$ $\left(=1\right.$ dyne) when they are at distance $10^{-2} \mathrm{~m}(=1 \mathrm{~cm})$.

$\therefore \mathrm{F}=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{x^{2}}{\left(10^{-2}\right)^{2}}$

$\therefore 10^{-5} \mathrm{~N}=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{x^{2}}{\left(10^{-2}\right)^{2}}$

$\therefore 1 \text { dyne }=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{x^{2}}{\left(10^{-2}\right)^{2}}$

$\therefore \frac{1}{4 \pi \epsilon_{0}}=\frac{10^{-5} \mathrm{~N} \times 10^{-4} \mathrm{~m}^{2}}{x^{2}}$

$=\frac{10^{-9}}{x^{2}} \cdot \frac{\mathrm{N} m^{2}}{\mathrm{C}^{2}}$

Similar Questions

Identify the wrong statement in the following. Coulomb's law correctly describes the electric force that

A cube of side $b$ has a charge $q$ at each of its vertices. The electric field due to this charge distribution at the centre of this cube will be

As shown in the figure. a configuration of two equal point charges $\left( q _0=+2 \mu C \right)$ is placed on an inclined plane. Mass of each point charge is $20\,g$. Assume that there is no friction between charge and plane. For the system of two point charges to be in equilibrium (at rest) the height $h = x \times 10^{-3}\,m$ The value of $x$ is $..........$.(Take $\left.\frac{1}{4 \pi \varepsilon_0}=9 \times 10^9\,Nm ^2 C ^{-2}, g=10\,ms ^{-1}\right)$

  • [JEE MAIN 2023]

$(a)$ Explain the meaning of the statement ‘electric charge of a body is quantised’.

$(b)$ Why can one ignore quantisation of electric charge when dealing with macroscopic i.e., large scale charges?

Positive charge $Q$ is distributed uniformly over a circular ring of radius $R$. A point particle having a mass $(m)$ and a negative charge $-q$ is placed on its axis at a distance $x$ from the centre. Assuming $x < R,$ find the time period of oscillation of the particle, if it is released from there [neglect gravity].

  • [AIIMS 2018]